\

Как можно защититься от передачи наследственных болезней?

Что такое наследственные заболевания и как с ними быть?

Наследственные заболевания передаются от одного или обоих родителей детям. Они вызываются генетическими мутациями, но далеко не все генетические заболевания являются наследственными. Как в этом разобраться, какие виды заболеваний бывают, как их лечить и как диагностировать — рассказываем в нашей статье.

Содержание

  • Что такое наследственные заболевания?
  • Чем отличаются наследственные заболевания от врожденных нарушений?
  • Виды наследственных заболеваний
  • Как передаются наследственные заболевания?
  • Как лечить наследственные заболевания и как с ними жить?
  • Как я могу узнать, что являюсь носителем наследственного заболевания?
  • На заметку

Что такое наследственные заболевания?

Наследственные заболевания — это заболевания, обусловленные генными или хромосомными мутациями. У людей от 20 000 до 25 000 генов. Генетическая мутация возникает, когда изменяется один или несколько генов. Если это генетическое изменение передается детям, то это наследственное генетическое заболевание.

При совпадении у партнеров статусов носительства определенных болезней есть высокий риск рождения ребенка с наследственным заболеванием. Если у вас не проявляются симптомы заболевания, вы по-прежнему можете быть носителем и передать мутации своим детям.


«Когда я сдала тест, жить стало спокойнее»: чем анализ генов полезен нашим клиентам

Многие генетически обусловленные заболевания проявляются не сразу после рождения, а спустя некоторое время. От наследственных заболеваний следует отличать врожденные заболевания, вызванные внутриутробными повреждениями, например, инфекцией или внешними воздействиями.

Чем отличаются наследственные заболевания от врожденных нарушений?

Генетические заболевания являются результатом изменения одного или нескольких генов и могут передаваться в поколениях или нет.

Все наследственные заболевания имеют генетическое происхождение, т. е. являются результатом изменения одного или нескольких генов и передаются из поколения в поколение. Симптомы могут не проявляться с самого рождения.

Врожденные нарушения могут быть наследственными или нет, а симптомы могут проявляться с рождения. Но их появление не обязательно связано с генетикой.

Виды наследственных заболеваний

Наследственные заболевания разделяются на хромосомные, генные и митохондриальные.

Хромосомные заболевания

В настоящее время описано около 1000 форм хромосомных заболеваний. Хромосомные заболевания возникают в результате изменения числа или структуры хромосом. Они характеризуются общими признаками: маленькая масса и длина тела при рождении, отставание в умственном и физическом развитии, задержка и аномалии полового развития и прочее.

Хромосомные заболевания наследуются редко. И более чем в 95% случаев риск повторного рождения в семье ребенка с хромосомной патологией не превышает общепопуляционного уровня. Хромосомные заболевания с аномалиями числа хромосом включают: синдром Патау, синдром Эдвардса, синдром трисомии хромосомы 8. А хромосомные заболевания с аномалиями структуры хромосом — синдром Ди Джорджи, синдром Вольфа-Хиршхорна, синдром «кошачьего крика», синдром Альфи, синдром Орбели.

Моногенные заболевания

Моногенные заболевания возникают в результате повреждения ДНК на уровне гена. Количество моногенных заболеваний по некоторым оценкам достигает 5000.

Среди признаков моногенных болезней можно выделить: различные формы умственной отсталости, дефекты органов слуха, зрения, скелетные дисплазии, болезни нервной, эндокринной, иммунной и других систем. К числу наиболее известных моногенных болезней относятся муковисцидоз, гемофилия А и В, болезнь Гоше, миодистрофия Дюшенна/Беккера, спинальная мышечная атрофия, дальтонизм.

Выявить тяжелые моногенные заболевания можно с помощью пренатальной диагностики, а также, определив наличие мутаций у родителей с помощью генетического теста.


Что можно узнать из генетического теста?

Митохондриальные заболевания

Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами в функционировании митохондрий, которые приводят к нарушению тканевого дыхания.

Митохондрии содержат свою собственную ДНК. А болезни, вызванные мутациями в митохондриальной ДНК, наследуются исключительно по материнской линии. Если именно таким образом было унаследовано митохондриальное заболевание, существует 100% вероятность того, что каждый ребенок в семье его унаследует.

Симптомы могут включать в себя: нарушение роста, слабость мышц, аутизм, ментальные расстройства, проблемы с дыханием, слухом и зрением. Примеры митохондриальных заболеваний: синдром Лея, синдром Вольфа-Паркинсона-Уайта, наследственная оптическая нейропатия Лебера и другие.

Полигенные или мультифакториальные заболевания

Существуют также болезни с наследственной предрасположенностью, которые называют мультифакториальными или полигенными заболеваниями.

Мультифакториальные заболевания обусловлены наследственными факторами риска, и в значительной степени — неблагоприятным воздействием среды. К мультифакториальным заболеваниям относятся большинство хронических заболеваний, включая сердечно-сосудистые, эндокринные, иммунные, нервно-психические, онкологические и др. Например, бронхиальная астма, сахарный диабет, ревматоидный артрит, гипертоническая болезнь сердца и т.д.

Как передаются наследственные заболевания?

Организм человека состоит из триллионов клеток. Каждая клетка имеет ядро, которое содержит хромосомы. Каждая хромосома состоит из плотно свернутых нитей дезоксирибонуклеиновой кислоты (ДНК).

Гены — это инструкции по сборке белков в нашем организме, которые определяют специфические черты каждого человека, например, цвет глаз или волос. Большинство клеток в организме обычно содержат 46 хромосом, организованных в 23 пары. В каждой из этих 23 пар есть одна унаследованная хромосома от отца и одна — от матери. Из 23 пар 22 пары одинаковые у женских и мужских организмов, а одна оставшаяся определяет, являетесь вы мужчиной (XY) или женщиной (XX).

Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования.

Доминантное наследование означает, что только одна копия гена — от матери или отца — должна иметь мутацию (или патогенный вариант гена) для проявления признака или заболевания. А при рецессивном типе человек наследует две измененные копии одного и того же гена.

Аутосомно-доминантный паттерн наследования

При аутосомно-доминантном наследовании заболеваний генетически обусловленная болезнь проявляется в том случае, если у человека есть хотя бы один мутированный ген, и этот ген не расположен на половых (Х и Y) хромосомах.

Болезнь Хантингтона и синдром Марфана — два примера аутосомно-доминантных болезней. Мутации в генах BRCA1 и BRCA2, которые также связаны с раком молочной железы, передаются по этой схеме.

Аутосомно-рецессивный паттерн наследования

При аутосомно-рецессивном наследовании мутируют обе копии генов. Чтобы унаследовать аутосомно — рецессивное заболевание, такое как муковисцидоз, спинальная мышечная атрофия, или фенилкетонурия (ФКУ), оба родителя должны быть носителями. Ребенок наследует две копии дефектного гена — по одной от каждого родителя. Например, люди, имеющие одну копию гена с мутацией, а вторую — без мутации, называются носителями, потому что сами они здоровы.

Х-сцепленное рецессивное наследование

В Х-сцепленном рецессивном наследовании мутированный ген находится на Х-хромосоме. Болезнь проявляется только в случае, если другой Х-хромосомы с нормальной копией того же гена у человека нет.

Мышечная дистрофия Дюшенна, некоторые виды дальтонизма и гемофилия А — примеры рецессивных заболеваний, связанных с X-хромосомой. Мужчина с рецессивным заболеванием, связанным с X-хромосомой, передаст свою нетронутую Y-хромосому сыновьям, и ни один из них не пострадает. Если он передаст свою Х-хромосому (с дефектным геном) своим дочерям, то все они будут носителями болезни. У его дочерей может не быть симптомов или только легкие признаки заболевания, но они могут передать мутированный ген своим детям.

Женщины-носители рецессивного заболевания, связанного с X-хромосомой, часто имеют лёгкие признаки заболевания или вообще не имеют симптомов. Это связано с тем, что у женщин-носителей есть одна нормальная копия гена и одна мутированная копия. Нормальная копия обычно компенсирует дефектную копию в женском организме, в отличие от мужчин, у которых только одна X-хромосома.

Женщины, имеющие только один патологический ген, передают заболевание в среднем половине своих детей вне зависимости от пола. Женщины же, имеющие два патологических гена, передают заболевание всем своим детям. К таким заболеваниям относятся гемофилия А и дальтонизм.


Как генетическое тестирование помогает при планировании семьи

Если вы знаете или предполагаете, что у вас или вашего партнера в семейной истории есть какое-либо генетическое заболевание, вы можете определить это с помощью Генетического теста Атлас. Генетическое консультирование поможет вам узнать о методах лечения, профилактических мерах и репродуктивных возможностях.

Как лечить наследственные заболевания и как с ними жить?

Раньше наследственные заболевания были неизлечимы. Сейчас это по-прежнему остаётся проблемой для многих заболеваний, но для некоторых из них методы лечения уже найдены. Например, это касается болезней, связанных с нарушением метаболизма.

При большинстве наследственных нарушений обмена веществ один фермент либо вообще не вырабатывается организмом, либо вырабатывается в форме, которая не работает. Например, при отсутствии какого-либо фермента в организме могут накапливаться токсичные вещества или может не синтезироваться необходимый продукт — как при гемохроматозе 1 типа.

При этом заболевании организм поглощает слишком много железа из пищи и не может естественным образом избавиться от избытка. Это может привести к чрезмерному накоплению железа в сердце, поджелудочной железе и печени.

Лечение генетических нарушений обмена веществ следует двум общим принципам:

  • Необходимо сократить или исключить прием любой пищи или лекарств, которые не усваиваются организмом.
  • Заменить или восполнить отсутствующий или неактивный фермент для восстановления метаболизма с помощью диеты и/или лекарств.

Есть более серьезные и распространенные наследственные заболевания, которые не лечатся. Например, мековисцидоз — скопление слизи в лёгких и в пищеварительной системе. От муковисцидоза нет лекарства, но разные методы контроля симптомов помогают предотвращать или уменьшать осложнения и облегчать жизнь с этим заболеванием.

Со временем муковисцидоз прогрессирует и может привести к летальному исходу, особенно при наличии сопутствующих инфекций. Сегодня благодаря достижениям медицины около половины людей с муковисцидозом доживают до 40 лет. Дети, рожденные с этим заболеванием в наши дни, смогут прожить ещё дольше.

Одно из самых тяжелых наследственных заболеваний, спинальная мышечная атрофия, также с недавнего времени поддается лечению с помощью генной терапии. Но доступен этот метод далеко не каждому. Препарат для лечения СМА — самый дорогой лекарственный препарат в мире.

Лечение или купирование генетических заболеваний стало возможным благодаря международному проекту «Геном человека» по изучению и картированию генов человека, произошел прорыв в диагностике и лечении наследственных заболеваний. Результаты проекта помогают не только находить гены, мутации в которых приводят к заболеваниям, но и диагностировать их с максимальной точностью.

Как я могу узнать, что являюсь носителем генетического заболевания?

Наши гены содержат инструкции, которые сообщают организму, как правильно функционировать. При изменении этих инструкций развиваются различные заболевания. Во многих случаях симптомы впервые проявляются в зрелом возрасте, поэтому иногда мы не знаем, что являемся носителями. Предупредить риски развития и передачи наследственного заболевания можно с помощью Генетического теста Атлас.

Читайте также  Цитологические методы диагностики опухоли яичника

Генетические заболевания, есть ли шанс их избежать?

Хотя для некоторых генетических заболеваний существуют эффективные методы лечения, для многих из них их все еще нет. И эти генетические заболевания поднимают самые тревожные вопросы в отношении будущего потомства. Сегодня ДНК исследования на генетические болезни с высокой точностью определяют наличие нарушений в генах и помогают людям принимать ответственные и осознанные решения, касающиеся их собственного здоровья или здоровья их детей.

Что означает наследственные заболевания?

Геном человека – это сложный набор инструкций, своеобразное руководство, которое определяет наш рост и развитие. Однако, в отличие от напечатанной книги, геном человека может изменяться. Эти изменения могут повлиять на отдельные участки (A, C, G или T) или гораздо более крупные части ДНК или даже хромосомы. Наша ДНК обеспечивает код для создания белков – молекул, которые выполняют большинство функций в нашем организме.

Тем не менее, когда часть нашей ДНК изменяется каким-либо образом, белок, который она кодирует, также подвергается воздействию, из-за чего он может больше не выполнять свою обычную функцию. В зависимости от того, где происходят эти мутации, они могут оказывать незначительное влияние или вообще не оказывать никакого воздействия или могут существенно изменить биологию клеток в нашем организме, что приведет к генетическому заболеванию.

Генетические заболевания – обширная группа заболеваний, которые определяются теми или иными нарушениями в геноме и закладываются еще на этапе формирования эмбриона. Причинами появления таких заболеваний являются мутации в генах, родственные связи (браки среди близких родственников), окружающая среда. Могут быть причиной как точечных мутаций, так и грубых нарушений структуры хромосом или митохондриальной ДНК. Каковы риски появления таких заболеваний?

Если у партнеров уже есть ребенок с аутосомно-рецессивным наследственным заболеванием, они оба по определению считаются носителями, поэтому существует 25-процентный риск того, что каждый будущий ребенок тоже будет иметь это заболевание. Если один из родителей несет мутацию, которая вызывает аутосомно-доминантное наследственное заболевание, независимо от того, клинически затронут этот родитель или нет, существует 50-процентный риск того, что каждый будущий ребенок унаследует мутацию и, следовательно, получит это заболевание. Однако, если пара родила ребенка с аутосомно-доминантным наследственным заболеванием, хотя ни один из родителей не несет мутации, то предполагается, что произошла спонтанная мутация и что большого риска рецидива заболевания у других детей нет.

Тем не менее, существует также вероятность того, что новая мутация могла произойти в прогениторной клетке-предшественнике у одного из родителей, так что некоторая неизвестная доля яйцеклеток или сперматозоидов этого индивидуума может нести мутацию, даже если она отсутствует в соматических клетках, включая кровь, которая обычно берется для тестирования. Этот сценарий называется мозаицизмом клеток зародышевой линии.

Наконец, что касается нарушений, связанных с хромосомой Х, то, если предполагается, что мать несет ген заболевания, существует 50-процентная вероятность того, что каждый сын будет иметь это заболевание и что каждая дочь будет носителем.

Однако большинство общих наследственных врожденных дефектов являются многофакторными. Если у пары был один больной ребенок, угроза для каждого будущего ребенка составит около 3 процентов. Если они родили двух больных детей, вероятность рецидива возрастает примерно до 10 процентов. Однако эти расчеты сделаны для населения в целом, поэтому риски в отдельных семьях могут различаться.

Причины и факторы возникновения генетических ошибок

Генетическое расстройство – это заболевание, вызванное изменением или мутацией в последовательности ДНК человека. Эти мутации, в свою очередь, могут быть вызваны ошибками в репликации ДНК или факторами окружающей среды, такими как сигаретный дым и облучение, которые приводят к изменению в последовательности ДНК.

Генетические расстройства можно разделить на три основные категории:

  1. Одиночные генетические расстройства: нарушения, вызванные дефектами одного конкретного гена, часто с простыми и предсказуемыми типами наследования. Они в свою очередь делятся на:
  • аутосомно-доминантные болезни: нарушения одного гена, которые возникают, когда у человека есть одна измененная копия этого гена и одна его здоровая копия. Например, это болезнь Хантингтона;
  • аутосомно-рецессивные болезни: нарушения одного гена, которые возникают только тогда, когда у человека есть две измененные версии соответствующего гена. Например, муковисцидоз;
  • нарушения по X–хромосоме: нарушения, которые отражают присутствие измененного гена в Х-хромосоме. Х-расстройства чаще встречаются у мужчин, потому что они имеют только одну Х-хромосому. Как следствие, мужчинам нужна только одна копия измененного гена для появления симптомов. Пример – мышечная дистрофия.
  1. Хромосомные расстройства: возникают е в результате изменения количества или структуры хромосом. Это, например, синдром Дауна, который является результатом появления дополнительной 21-й хромосомы, то есть у такого человека три копии 21-й хромосомы вместо двух.
  2. Многофакторные расстройства (сложные заболевания): расстройства, вызванные изменениями в нескольких генах, часто в сложном взаимодействии с факторами окружающей среды, возрастом, образом жизни, привычками, такими как диета или сигаретный дым. Это, например, рак.

Семейная история позволяет пролить свет на характер генетического наследования и может повлиять на расчет показателей риска, выявляя другие генетические воздействия. Специалист-генетик сможет определить, имеет ли предполагаемое заболевание сильный генетический компонент и, если это так, является ли наследственность моногенной, хромосомной или многофакторной.

Методы предотвращения генетических патологий

Сегодня ученые работают над разработкой методик CRISPR-Cas, которые позволяют редактировать геном высших животных, в том числе человека. Это перспективное, но вызывающее споры относительно своей этичности, направление генной инженерии. Не так давно появились убедительные доказательства работы этой системы – с помощью редактора CRISPR-Cas9 был успешно изменен геном эмбриона с гипертрофической кардиомиопатией. Предполагается, что подходы CRISPR-Cas в будущем будут использовать для лечения наследственных заболеваний. Но система, к сожалению, применима не везде. Например, наличие лишней хромосомы (синдром Дауна) устранить с помощью CRISPR-Cas9 невозможно даже теоретически. Поэтому в данный момент все эффективные способы предотвращения генетических заболеваний сводятся к генетической диагностике родителей и эмбриона.

Большинство пар, которые собираются пройти генетическую диагностику попадают в одну из двух категорий: те, у кого уже есть ребенок с генетически обусловленными проблемами, и те, у кого есть один или несколько родственников с заболеванием, которое, по их мнению, может быть унаследовано.

Для диагностики генетических нарушений используются такие методы, как:

  1. пренатальная генетическая диагностика. Скринирование позволяет определить патологии на стадии внутриутробного развития (синдром Дауна, синдром Эдвардса, синдром Патау и некоторые другие). Сегодня возможно неинвазивное исследование, когда берется генетический материал матери на сроке 10 недель;
  2. преимплантационная генетическая диагностика (в случае искусственного оплодотворения) – позволяет найти у эмбриона до 6000 маркеров наследственных заболеваний;
  3. кариотипирование родителей – обеспечивает наиболее точные значения риска наследственных заболеваний. Кариотипирование обычно проводится еще на этапе планирования беременности.

Любой ДНК анализ на наследственные заболевания дает процентную вероятность риска проявления наследственного заболевания. Даже в случае пренатальной диагностики, которая дает ответ с точностью 98%, остается небольшой шанс родить здорового ребенка. Поэтому решение, как распорядиться предоставленной информацией, принимают только родители будущего ребенка. Лаборатория в свою очередь гарантирует конфиденциальность исследования.

Пресс-центр

Как передать ребенку «хорошие» гены

Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.

Как возникают наследственные болезни

Если генетический код нарушается, то и белок получается «неправильным», либо вырабатывается в слишком большом или слишком малом количестве. Это может привести к расстройствам важных процессов в организме. Так возникают наследственные болезни.

Если изменение произошло в определенном гене и нарушено производство определенного белка, то мутация называется генной. Иногда возникают более грубые нарушения – хромосомные мутации. Самый знаменитый пример хромосомной болезни – синдром Дауна, когда у человека есть добавочная – 21 – хромосома.

Некоторые генные мутации передаются по наследству от родителей к детям. Другие возникают впервые, если у родителя не было нарушения, и оно впервые произошло в яйцеклетке или сперматозоиде. Хромосомные болезни обычно не наследуются: они возникают по разным причинам до, во время или после оплодотворения.

Когда важно посетить генетика

В некоторых семьях повышен риск наследственных болезней. Будущим родителям стоит посетить клинического генетика до наступления беременности в следующих случаях:

  • Если один из родителей страдает наследственным заболеванием, является носителем «неправильного» гена.
  • Если в семье будущей матери или отца были случаи генных, хромосомных болезней, онкологических и иных заболеваний, связанных с аномальными генами.
  • Если будущей матери больше 35 лет.
  • Если у пары уже есть дети с генетическими нарушениями или предыдущие беременности закончились выкидышем.
  • Если пара долго не могла зачать ребенка, если ей пришлось воспользоваться вспомогательными репродуктивными технологиями.
  • При близкородственных браках, например, между двоюродными братьями и сестрами.

Иногда помогает родословная

Из школьного курса биологии многие помнят, что половину генов ребенок получает от мамы, половину – от папы. Следуя той же логике, можно предположить, что от каждой бабушки и каждого дедушки ему достается по четверти генотипа, и можно проследить, от кого ребенок получил половинку той или иной хромосомы.

На деле все не так просто. Яйцеклетка получает новый набор хромосом – точно такого нет ни в одной клетке тела женщины. Одни участки новой хромосомы могут оказаться бабушкиными, другие – дедушкиными. И в каждом случае набор получается уникальным – поэтому (и по ряду других причин) родные братья и сестры не становятся копией своих родителей и друг друга, если только они – не однояйцевые близнецы.

В каждом человеке сильно перемешаны гены от разных поколений. Источник некоторых наследственных заболеваний еще можно проследить, составив родословную. Но если «плохих» генов много, и они не проявляют себя явно, вызывают лишь предрасположенность к тем или иным болезням – понять, откуда они, невозможно. Поэтому и обвинять кого-то из членов семьи в том, что от него ребенку достались «плохие» гены, бессмысленно.

Папы после 50 чаще делают генные «опечатки»

Чем старше родители, тем выше риск того, что их ребенок родится с наследственным заболеванием – это справедливо и для мужчин, и для женщин. В зависимости от того, у кого из родителей произошел сбой, у ребенка могут возникать разные проблемы.

Читайте также  Этиология и патогенез системной красной волчанки

Организм мужчины постоянно производит новые сперматозоиды – до 1500 в секунду. Как бы тщательно ни копировала себя ДНК, в ней могут быть «опечатки», вероятность которых растет вместе с количеством клеточных делений. В мужских сперматозоидах со временем возникают генные мутации. Количество хромосом не нарушено, но в гене может быть ошибка, из-за которой производится неправильный белок.

У отцов старше 50 лет в три раза чаще, чем у 25-летних, рождаются дети, страдающие шизофренией, и в шесть раз чаще, чем у 27-летних, – дети с редким генетическим заболеванием, которое называется синдромом Апера.

Беременная «носит» в своем животе внуков и внучек

У женщин риск наследственных болезней возрастает после 35 лет. Когда девочка появляется на свет, в ее яичниках уже есть половые клетки. Беременная женщина уже носит в своем животе будущих внуков и внучек.

Половые клетки в яичниках долго находятся в «спящем» состоянии, редко делятся, и если в них возникают ошибки, то обычно «по-крупному», на уровне хромосом. У матерей старше 35 лет повышен риск рождения ребенка с синдромом Дауна, у них чаще случаются выкидыши.

В клетках человека есть собственные «электростанции» – митохондрии, они постепенно разрушаются. Чем дольше яйцеклетка «спит» в яичнике, тем «слабее» становятся ее митохондрии. А ведь организм ребенка получает их именно из яйцеклетки, все митохондрии в организме каждого из нас – материнские. Если плод получает от матери «слабые» митохондрии, они копируют себя во всех клетках организма. Есть данные о том, что из-за этого сокращается продолжительность жизни потомства.

Но это не означает, что такая проблема будет у каждой «поздней» мамы. Многие рожают вполне здоровых малышей с «хорошими» генами. Но родителям старшего возраста стоит помнить о повышенных рисках, более тщательно подходить к планированию беременности.

Можно ли выбрать глаз и уровень интеллекта будущего ребенка?

Процедура ЭКО часто дополняется предимплантационной генетической диагностикой (ПГД). Обычно врачи-репродуктологи исследуют гены эмбрионов до подсадки в матку на предмет хромосомных и генных нарушений. Задача – выбрать самого здорового будущего малыша.

А можно ли по генам определить пол будущего ребенка, посмотреть, какой у него будет цвет глаз, волос, уровень интеллекта или физического развития? Оказывается, можно. Но в большинстве стран это запрещено. Врачи помогут зачать здорового ребенка, но заниматься искусственной селекцией не станут.

Если зачатие произошло естественным путем, гены будущего ребенка тоже можно проверить. Для этого используют неинвазивное пренатальное тестирование (НИПТ).

Гены, которые действуют на расстоянии

Как мы уже разобрались, каждый родитель передает ребенку половину своих хромосом. Казалось бы, вторая половина генов, которая не передалась малышу, не имеет к нему отношения. В 2018 году ученые провели исследование, которое показало, что это не так.

Было установлено, что гены мамы и папы, которые не были переданы ребенку, примерно на 30% влияют на уровень его образования. Как гены могут действовать на расстоянии? Если разобраться, в этом нет ничего удивительного.

Когда женщина готовится к зачатию, вынашивает ребенка, затем вскармливает его грудью, в ее организме продолжают функционировать оба набора хромосом. Ребенку передался лишь один из них, но и второй оказывает на него влияние на через материнский организм, грудное молоко. От этого в будущем зависят привычки питания, здоровье.

Отец не носит ребенка в животе и не кормит грудью. Он влияет на то, каким вырастет ребенок, через воспитание, личный пример.

Не хромосомами едиными

Из всего вышесказанного следует, что у родителей есть не так много способов повлиять на гены будущего ребенка. Но ведь на наследственности свет клином не сошелся. Многое зависит от внешней среды.

Характер и личность формируются благодаря воспитанию, высокий интеллект – обучению, а рост и вес зависят от питания. Здоровье и продолжительность жизни тоже на роду не написаны, если заботиться о своем организме. И это как раз то, на что мама и папа могут повлиять. Хорошие привычки закладываются в детстве.

Профилактика наследственных заболеваний

Профилактика для рождения и воспитания здорового ребенка.

В семье родился ребенок с генетическим отклонением? Стоит ли винить себя родителям? Разумеется, нет. Поскольку причиной является наличие дефекта в хромосомах или генах, изменения в которых произошли задолго до наступления беременности.

Рождение и воспитание здорового ребенка — стремление каждого родителя

Для этого необходимо планировать деторождение, которое включает в себя несколько этапов.

Первичная профилактика — до беременности

* Выбор оптимального возраста для продолжения рода: женщины — от 20 до 35 лет, мужчины — до 45 лет. При наступлении беременности в более позднем возрасте увеличивается вероятность рождения ребенка с наследственным заболеванием — например, с синдромом Дауна. Считается, что организм женщины готов к вынашиванию только после 20 лет, но на этот счет ведутся дискуссии.
* Выявление у обоих супругов одинакового дефекта в генах и/или хромосомах. При наличии высокого риска рождения ребенка с тяжелыми генетическими отклонениями (более 20%) рекомендуется использование методов экстракорпорального оплодотворения.
* Отказ от родственных браков.

Вторичная профилактика — во время наступившей беременности

Выявление тяжелых наследственных заболеваний на ранних сроках с последующим прерыванием беременности по согласию родителей. Конечно, это не самый лучший выход, но в настоящий момент — единственный на этом этапе.

Однако, к сожалению, некоторые родители по религиозным или другим соображениям не идут на такой шаг.

Третичная профилактика — после рождения ребенка

При некоторых заболеваниях своевременное выявление и назначение лечения позволяет нормализовать работу органов и уменьшить выраженность отклонений.

Врожденный гипотиреоз — понижена либо отсутствует функция щитовидной железы.

Основа лечения — пожизненный прием гормонов щитовидной железы.

Целиакия — непереносимость белка глютена, который содержится в злаковых культурах: пшенице, ржи, ячмене, овсе.

Основа лечения — пожизненное исключение из питания злаков.

Галактоземия — нарушение преобразования сахара в глюкозу. Проявляется непереносимостью молока, молочных смесей и некоторых продуктов, содержащих сахар (углеводы).

Основа лечения — исключение из питания молочных продуктов, хлебобулочных изделий и некоторых других продуктов.

Метилмалоновая ацидурия — нарушение образования глюкозы из не сахаросодержащих веществ (белков).

Основа лечения — на протяжении всей жизни питание с высоким содержанием углеводов, но небольшим — белка.

Фенилкетонуря — нарушение обмена незаменимой аминокислоты фенилаланина. В организме накапливается фенилаланин и его токсичные продукты.

Основа лечения — употребление лечебных продуктов питания (например, для младенцев — специальные смеси) и натуральных продуктов, содержащих мало белка. Возможна отмена такого питания по достижению ребенком полового созревания.

Музовисцидоз — поражаются железы всех органов, которые выделяют слизь: бронхи, поджелудочная железа, кишечник, половые железы. Усиливается вязкость и густота слизи.

Основа лечения — пожизненный прием ферментов, разжижающих слизь.

Адреногенитальный синдром — корой надпочечников увеличивается выработка гормонов андрогенов.

Основа лечения — пожизненный прием преднизолона или гидрокортизона.

На заметку

Для выявления фенилкетонурии, врожденного гипотиреоза, муковисцидоза, галактоземии и адреногенитального синдрома проводится скрининг исследование всех новорожденных детей в роддоме.

В нашем следующем материале — подробнее о неонатальном скрининге, а также заболеваниях, выявляемых с его помощью.

Можно ли «обхитрить» гены и хромосомы?

По статистике под воздействием неблагоприятных факторов около 20% мутаций, возникают у родителей, которые затем они могут передавать своему малышу. В результате развивается болезнь — хромосомная аномалия. Однако такие дефекты, как правило, не передаются далее следующим поколениям.

Остальные 80% достаются ребенку от предков — истинные наследственные заболевания, которые с определенной частотой появляются у потомков.

Поэтому следует заботиться о здоровье, начиная с детского возраста.

Почему важно придерживаться правил природы?

Каждая девочка рождается с ограниченным количеством яйцеклеток, который рассчитан на определенный период — фертильный или детородный возраст. После полового созревания в норме ежемесячно одна из них становится готова к оплодотворению для продолжения рода.

Между тем наш генетический аппарат «нежен», поэтому под влиянием неблагоприятных факторов могут возникать дефекты в генах или хромосомах. К сожалению, мутации в них отнюдь не «обнуляются», а накапливаются и затем могут передаваться ребенку.

То есть возникают нарушения в хромосомах здесь и сейчас в конкретной яйцеклетке или сперматозоиде под воздействием неблагоприятных факторов. Например, радиации или лекарственных препаратов.

Что делать будущим родителям до наступления беременности?

Молодым женщинам — навсегда отказаться от курения, злоупотребления алкоголя приема наркотических препаратов.

К мужчинам требования не столь категоричны: рекомендуется отказаться от вредных привычек либо устранить воздействие вредных факторов за 2-3 месяца до предполагаемого зачатия. За этот промежуток времени сперма обновляется.

Объем исследований

Следует пройти медико-генетическое консультирование, а при необходимости определить кариотип или выполнить хромосомный микроматричный анализ. Последнее исследование предпочтительнее, поскольку более точно выявляет возможность развития генетических отклонений у будущего ребенка.

Для профилактики возникновения врожденных аномалий развития у плода необходимо сдать анализы на выявление инфекций: герпеса, цитомегаловируса, краснухи, токсоплазмоза и некоторых других.

Также женщине следует посетить гинеколога и сдать мазки из влагалища, а при обнаружении инфекции (бактериальной, грибковой) пролечится вместе с половым партнером.

Помогут ли витамины?

Для предотвращения формирования врожденных аномалий развития у ребенка будущей маме рекомендуется принимать витамины во время беременности. Например, доказано, что фолиевая кислота на 93% снижает риск возникновения врожденных пороков развития нервной системы у плода (гидроцефалия, отсутствие головного мозга и другие).

Для нормальной работы генетического аппарата и дальнейшего внутриутробного развития плода необходимо начинать принимать витамины за 2-3 месяца до наступления беременности. Обязательно — фолиевая кислота, витамины группы В, витамин Е.

Однако для профилактики развития наследственных заболеваний при уже наступившей беременности такой подход не работает.

Профилактика генетических отклонений: что нового?

Ученые-генетики находятся на страже здоровья поколений, поэтому постоянно ведут разработки.

Выборочное избавление от плода с наследственным заболеванием

В Природе действует естественный отбор: она избавляется от нежизнеспособного либо с грубыми патологиями плода. На ранних сроках происходит выкидыш или преждевременные роды, развивается замершая беременность.

Конечно, такие исходы беременности не всегда связаны только с нарушениями в развитии малыша, многое зависит и от состояния организма будущей матери. Однако в 50% случаев причина — наследственные заболевания либо врожденные пороки развития.

Читайте также  Каков механизм наследования расстройств цветового зрения?

Применим ли этот закон в искусственно созданных условиях? В настоящее время ученые работают над созданием непереносимых факторов для плода с отклонениями. При этом условия должны быть приемлемы и абсолютно безвредны для нормально развивающегося ребенка и беременной женщины.

Замена дефектного гена — будущее или реальность?

В опытах на животных доказано, что возможно встраивание в зародыш искусственно синтезированного гена вместо мутировавшего. Введенные нормальные гены работают и в дальнейшем передаются по наследству.

Однако такая технология — далекая перспектива для применения на людях. Поскольку имеются много аспектов, в первую очередь — этическая сторона. Ведь нам от предков достаются гены, созданные природой. Тогда как при этой методике происходит замена на искусственно синтезированные новые гены. Какова будет судьба этих людей? Как будут функционировать встроенные гены через несколько поколений? Сможет ли общество принять исходы в случае неудач? Ответы на эти вопросы пока отсутствуют…

Как видите, медицина на данный момент не имеет возможности «вылечить» уже изменившиеся гены и хромосомы. Поэтому остается единственный выход: снизить вероятность рождения больного ребенка в отдельно взятой семье при помощи имеющихся современных технологий.

Автор: Корецкая Валентина Петровна, педиатр,

Наследственные заболевания сердечно-сосудистой системы в вопросах и ответах

Наиболее распространённые наследуемые и врождённые заболевания сердечно-сосудистой системы

Каковы симптомы наследственного заболевания сердца?

Для многих семей первый признак того, что что-то не так, — это когда кто-то из членов семьи умирает внезапно без видимой причины.

Каковы различные типы наследственных заболеваний сердца?

Наиболее распространенными наследственными заболеваниями сердца являются кардиомиопатии и каналопатии, а также нарушения обмена холестерина.

Наследственные кардиомиопатии могут вызывать нарушение работы сердечной мышцы:

  • гипертрофическая кардиомиопатия — локальное или распространенное утолщение стенки преимущественно левого желудочка сердца;
  • дилатационная кардиомиопатия — истончение мышечной стенки сердца и увеличение размеров камер сердца;
  • аритмогенная кардиомиопатия правого желудочка — изменение стенки правого желудочка, которое может приводить к развитию жизнеопасных нарушений ритма сердца.

Каналопатии могут вызвать нарушения сердечного ритма:

  • синдром удлиненного интервала QT, синдром укороченного интервала QT и синдром Бругада — изменение работы каналов в клетках сердца, которые приводят к изменениям на ЭКГ и жизнеопасным нарушениям ритма сердца;
  • катехоламинэргическая полиморфная желудочковая тахикардия — возникновение желудочковой тахикардии в результате физической нагрузки или сильного эмоционального стресса;
  • прогрессирующее нарушение проводимости — замедление или прекращение проведения электрического сигнала в мышце сердца, что может потребовать имплантации электрокардиостимулятора.

К наследственным состояниям, повышающим риск сердечно-сосудистых заболеваний, относится и семейная гиперхолестеринемия — очень высокий уровень холестерина, который приводит к раннему развитию атеросклероза сосудов сердца и, как следствие, инфаркта миокарда.

Что вызывает наследственное заболевание сердца?

Гены влияют на то, как мы выглядим и как работает наш организм. Гены действуют как рецепты для создания определенных вещей в теле, и каждый рецепт уникален в зависимости от порядка единиц, из которых он состоит. Если есть ошибка в одном из этих генов (путаница в порядке следования этих единиц), это может вызвать заболевание. Эта ошибка известна как «поломка» гена или мутация.

Как правило, если у одного из ваших родителей есть «поломка» в гене, то шанс, что у вас тоже будет такая «поломка» равен 50%, но бывают и другие сценарии, о которых вам расскажет ваш врач. Важно помнить, что мы не можем контролировать, какие гены мы передаем своим детям.

Иногда «поломка» в гене у человека есть, а какие-либо признаки или симптомы самого заболевания могут никогда не проявиться. Важно помнить, что в таком случае человек все равно можете передать «поломку» гена своему ребенку, и невозможно будет узнать, как это может на него повлиять.

Большинство наследственных заболеваний сердца демонстрируют значительные различия в симптомах среди членов семьи. Например, у одного человека в семье может быть тяжелое заболевание, в то время как у другого из той же семьи могут быть только очень легкие симптомы.

Как найти мутацию («поломку») в гене?

«Поломки» ДНК, которые вызывают проблемы со здоровьем, часто называют мутациями.

«Поломки» в структуре генов выявляются с помощью генетического тестирования. Генетическое тестирование позволяет нам исследовать вашу ДНК, чтобы выявить любые отличия, которые могут предрасполагать Вас к развитию определенных проблем со здоровьем.

Генетическое тестирование доступно для большинства наследственных заболеваний сердца. Цель его состоит в том, чтобы найти ту «поломку» в ДНК человека, которая вызвала заболевание сердца.

Иногда даже после того, как было проведено кардиологические обследование, остается неясным, есть ли у человека риски, связанные с сердцем, и в каком состоянии находится сердце (так как могут быть скрытые проблемы, не видимые при обычных методах обследования). В ряде случаев у врача все же остаются сомнения и он направляет пациента на генетическое тестирование. Эти сомнения могут быть продиктованы семейной историей, указаниями в анамнезе пациента (например, ощущения сердцебиений во время физической нагрузки), незначительными отклонениями или пороговыми по отношению к норме значениями ряда показателей. Если таких пороговых показателей несколько и они специфичны для риска развития определенных заболеваний или синдромов, это может насторожить специалиста. Есть и другие причины. В этих случаях генетическое тестирование может помочь получить ответ на вопросы специалиста и сориентировать врача в клиническом поиске правильного диагноза. Обследование пациента с целью поиска генетических причин наследственного заболевания сердца может предоставить врачу несколько видов информации. Во многих случаях результаты генетического теста не меняют диагноз пациента и то, какое лечение назначено, но в некоторых случаях генетическое тестирование может помочь в определении правильного диагноза и лечения. Также генетическое тестирование помогает узнать, кто из членов вашей семьи может быть подвержен риску развития той же проблемы с сердцем, а также дать основание для медико-генетического консультирования семьи при планировании рождения других детей.

Какие генетические тесты могут предложить пациенту с наследственным заболеванием сердца?

В настоящее время наиболее оптимальным генетическим тестом для пациентов с наследственным заболеванием сердца является секвенирование ДНК (от лат. sequentum — последовательность, определение последовательности структурных единиц молекулы ДНК — нуклеотидов): секвенирование набора отдельных генов человека или всех его генов (секвенирование экзома). В некоторых случаях необходим наиболее всеобъемлющий тест — секвенирование генома, который включает не только гены, но и межгенные участки ДНК. С выбором конкретного теста поможет определиться ваш врач. Некоторым семьям могут предложить секвенирование “трио” экзомов или геномов (генетический тест пациента и обоих его родителей) или более редкие генетические тесты: хромосомный микроматричный анализ, MLPA и др. В этом случае врач объяснит, почему возникла необходимость расширенного или нестандартного генетического тестирования.

Возможны три варианта результатов генетического тестирования:

Причина заболевания подтверждена. В таком случае можно рекомендовать родственникам пациента проверку на наличие той же «поломки» гена, что и у пациента. Этот тип генетического тестирования в семьях называется каскадным скринингом (Рис. 21).

Рисунок 21. Каскадный скрининг — после того, как был выявлен пациент с семейной гиперхолестеринемией в родословной, его родственники также были тестированы на предмет наличия той же мутации, что привело к диагностике этой болезни у некоторых из них (показаны красным).

  • Обнаружен генетический вариант (изменение в гене) неизвестной клинической значимости. Это означает неоднозначную причинно-следственную связь между найденным изменением в гене и развитием заболевания у ребенка. В таком случае могут потребоваться дополнительные исследования или время для уточнения патогенности этого генетического варианта (ваш врач вам расскажет, какие исследования необходимо провести).
  • Генетическое исследование не выявило каких-либо отклонений, которые можно было бы считать причиной заболевания. В таком случае ваш врач порекомендует пересмотреть «сырые» (исходные) данные, полученные в ходе исследования, через 1-2 года (к этому времени в международных базах данных могут появиться новые генетические сведения, позволяющие «пролить свет» на симптомы пациента) или порекомендует дополнительные генетические тесты. Важно помнить, что генетическое тестирование не может исключить заболевание даже при отрицательном результате тестирования.
  • Вероятность того или иного результата разная при разных наследственных заболеваниях сердца. Уточните у своего врача, какой результат он ожидает получить в итоге генетического тестирования.

    Полученные «сырые» данные такого тестирования (так называемые файлы FASTQ) желательно забрать из лаборатории сразу после получения результатов и хранить их у себя на электронном носителе всю жизнь. Генетическая информация, которая содержится в этом файле, является очень ценной и может еще вам и ребенку потребоваться в течение жизни.

    Что делать, когда у члена семьи диагностируется наследственное заболевание сердца?

    Если вы являетесь родственником человека, у которого диагностировано наследственное заболевание сердца, рекомендуется обратиться в специализированный центр. Ваш врач, получив эти данные, посоветует вам провести такие исследования, которые требуются для подтверждения или исключения у вас подобных патологических состояний. Например, вам могут предложить пройти электрокардиографическое обследование, эхокардиографию, стресс-тест, а также помогут определить кому из членов вашей семьи рекомендовано пройти обследование, в том числе генетическое.

    Какие генетические тесты могут предложить родственникам пациента с наследственным заболеванием сердца?

    Как правило, родственникам пациента предлагают провести секвенирование по Сэнгеру выявленной у пациента «поломки» гена (мутации). Это относительно дешевое, простое и быстрое исследование короткого участка ДНК, в котором подтверждается наличие или отсутствие у родственников пациента выявленной у первого в семье пациента (или пробанда) «поломки» гена.

    В этом случае возможны два варианта результатов генетического теста:

    • «Поломка» найдена. Родственнику необходимо наблюдаться далее у специалиста.
    • «Поломка» не найдена.Можно утверждать, что именно этого заболевания у родственника нет, за исключением редких случаев, о которых проинформирует врач.

    к списку

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: